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A theory is developed to describe the conformation change of polymers in flow 
through dilute, random fixed beds of spheres or fibres. The method of averaged 
equations is used to analyse the effect of the stochastic velocity fluctuations on 
polymer conformation via an approach similar to that used in our previous analysis 
of particle orientation in flow through these beds (Shaqfeh & Koch 1988a, b ) .  The 
polymers are treated as passive tracers, i.e. the polymeric stress in the fluid is 
neglected in calculating the stochastic flow field. Simple dumbbell models (either 
linear or FENE) are used to model the polymer conformation change. In all cases we 
find that the long-range interactions provide the largest contribution (in the limit of 
vanishingly small bed volume fraction) to an evolution equation for the probability 
density of conformation. These interactions create a conformation-dependent 
diffusivity in such an equation. Solutions for the second moment of the distribution 
demonstrate that there is a critical pore-size Deborah number beyond which the 
radius of gyration of a linear dumbbell will grow indefinitely and that of the FENE 
dumbbell will grow to a large fraction of its maximum extensibility. This behaviour 
is shown to be related to the development of 'algebraic tails' in the distribution 
function. The physical reasons for this critical condition are examined and its 
dependence on bed structure is analysed. These results are shown to be equivalent to 
those which we derive by the consideration of a polymer in a class of anisotropic 
Gaussian flow fields. Thus, our results are explicitly related to recent work regarding 
polymer stretch in model turbulent flows. Finally, the effect of close interactions and 
their modification of our previous results is discussed. 

1. Introduction 
In  their experimental work, James & MacClaren (1975) demonstrated that the 

addition of a small concentration of flexible polymer to a Newtonian solvent could 
cause a significant increase in the pressure drop necessary to pump the fluid through 
a fixed bed of glass spheres at a constant flow rate. This was shown to occur even for 
flows without inertia and was associated with significant conformation change and 
stretch of the polymer. The latter was inferred through pressure drop measurements 
made at various points along the column of fixed spheres and by evidence of polymer 
degradation during flow. Significant polymer stretch was argued to increase the 
stress within the solution and thus increase the friction factor for a given flow rate. 
No direct correlation between polymer conformation change in fixed beds and 
increased particle drag was determined because no direct measurement of the 
polymer stretch was accomplished. Later research (Durst, Haas & Kaczmar 1981 and 
Kaser & Keller 1980) verified and extended these experimental results. 
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In subsequent work, a number of researchers have attempted to explain the 
postulated ‘ coil-stretch ’ transition in fixed beds by employing models based on 
simple deterministic flows. In fact, strong flow criteria available for a number of 
linear steady flows were applied more or less directly to the complicated flow field 
experienced by a polymer molecule as it traversed a disordered fixed network 
(Olbricht, Rallison & Leal 1982; Prud’homme & Hoagland 1983). A number of other 
studies have employed the periodic constricted tube or channel as a model for the 
flow in a fixed bed of spheres (Dieber & Schowalter 1979; Zick & Homsy 1984; Phan- 
Thien & Khan 1987; Pilitsis & Beris 1989; James et al. 1990). Still others have used 
unsteady linear flows in certain periodic combination to model the sampling of the 
complicated flow in a fixed bed (Nollert & Olbricht 1985). In all of this work, 
researchers have chosen to concentrate on deterministic models and to neglect the 
stochastic element of flow through disordered fixed beds. Although stochastic flow 
models have been used extensively in trying to understand the dispersion of a passive 
tracer in fixed beds (Saffman 1959; Koch & Brady 1985) these same models have not 
been applied to the study of polymer conformation in the flow. However, there have 
been important attempts to consider the conformation of polymers in stochastic 
flows which model fully developed, turbulent flows, most notably by Lumley (1972) 
and Jhon, Sekhon & Armstrong (1987). 

In the present discourse, we build upon the recent work by Shaqfeh & Koch 
(1988a, b )  who demonstrated that the orientation of small axisymmetric ‘tracer ’ 
particles flowing through random, dilute fixed beds of spheres or fibres could be 
described rigorously via the method of averaged equations. Although our analysis 
was restricted to dilute fixed beds (#f < 1 where q5f is the solids volume fraction of the 
fixed bed) and to dilute suspensions of tracer particles, we demonstrated that the 
resulting stochastic flow field caused the particle orientations to evolve to a non- 
random steady state. Moreover, we showed that the axisymmetric particles tend to 
orient with their ‘thin side ’ in the direction of the flow even when the Darcy pore size 
of the bed was much larger than the size of the suspended axisymmetric particles. 
Thus, there existed no ‘steric selection’ of particle orientations and any particle 
alignment was induced solely by the hydrodynamic interactions in the bed. The 
degree of this particle alignment was predicted and shown to be a strong function of 
tracer particle aspect ratio. For the details the reader is referred to the specific 
publications. Recently these results have been verified using light scattering 
measurements (see Frattini et al. 1991). 

This theory is now applied to describe the conformation and stretch of model 
polymer molecules in the flow through random, dilute fixed beds of spheres or fibres. 
The suspension of polymers considered is very dilute such that the polymers can be 
treated as passive tracers in the bed, i.e. the polymeric stresses are neglected in 
calculating the flow field within the bed. The polymer molecules are modelled as 
simple dumbbells whose conformation can be completely specified by their end-to- 
end vector, r. In $2, an evolution equation for the probability density function oP the 
end-to-end vector, (O) ( r ) ,  during the flow through a random, isotropic fixed bed of 
fibres is derived. The theory is first developed for linear or Hookean dumbbells. The 
evolution equation is an averaged equation with the average taken over the statistics 
of the bed. It is argued that the leading-order effect for small volume fraction is due 
to far-field hydrodynamic interactions in the bed, and it is demonstrated that these 
create a hydrodynamically induced conformation-dependent diffusivity in the 
averaged evolution equation. This diffusivity tensor is quadratic in the end-to-end 
vector, and the fourth-order proportionality tensor is calculated explicitly as a 
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certain velocity gradient correlation function. Although, it is difficult to derive 
analytic expressions for the normalized probability density function, we derive and 
solve simple equations for the moments of the distribution as functions of time. It is 
demonstrated that the radius of gyration depends on the volume fraction of the bed 
solids, & and the pore-size Deborah number, De = UA/t&, where U is the magnitude 
of the average velocity, t& is the Darcy pore size or Brinkman screening length, and 
A is a characteristic polymer relaxation time. Below a certain critical Deborah 
number (which depends on the solids volume fraction, q5f) it  is demonstrated that the 
dumbbell reaches a steady conformation which shows marked stretch, particularly 
in the flow direction. Above the critical Deborah number, we demonstrate that a 
Hookean dumbbell appears to grow exponentially for all time, achieving no finite 
steady state. Thus our theory predicts that beyond a certain flow rate, there exists 
a large change in the r.m.s. value of the end-to-end vector of the polymer and 
therefore in any quantities which scale with this measure of conformation. We 
continue to explore this basic result in the remainder of the paper. In  $2, we 
demonstrate that the critical condition is related to ‘algebraic tails’ in the 
probability density function, and thus, that the critical Deborah number depends on 
the moment that is being examined. Finally, we remove the aphysical singularity in 
the steady-state stretch by considering the effects of finite extensibility via the 
Warner dumbbell model. Beyond the critical condition calculated for the Hookean 
spring, we find that the finitely extensible nonlinear elastic (FENE) dumbbell 
stretches to a large fraction of its maximum extensibility. 

In  $3, our results are examined in the light of previous work and via a different 
approach. It is demonstrated that, in the dilute limit, the stochastic flow field created 
by the long-range hydrodynamic interactions in a random fixed bed is equivalent to 
a stochastic flow with certain anisotropic Gaussian statistics. The average over the 
positions and configurations of the fixed bed particles can then be replaced by an 
average over the statistics of the Gaussian flow field. It follows that both long-time 
tracer dispersion and polymer configuration in fixed beds depends only on the 
covariance of the disturbance flow in the dilute approximation. We rederive our 
results for polymer conformation by considering the polymer in a Gaussian field 
which it samples through its motion with the mean velocity - a good approximation 
far weak fluctuations. The derivation employs previous results based on dia- 
grammatic or renormalized perturbation methods. It is thus demonstrated that our 
approximate expressions are equivalent to Kraichnan’s direct interaction approxi- 
mation (Kraichnan 1959, 1970; Roberts 1961) when applied to this problem. 
Finally, this section delineates the similarities and differences between our work and 
the conformation transition predicted by Jhon et al. (1987) and Lumley (1972) in 
their consideration of polymers in isotropic Gaussian flows with no mean velocity as 
models of fully, developed turbulence. We define a new strong flow criterion for our 
class of anisotropic Gaussian flow fields which are sampled with a non-zero mean 
flow. 

We demonstrate in $4 that our results apply to any dilute random fixed bed 
structure, because any such bed gives rise to a Gaussian flow field. This approach is 
then applied to the flow of polymers through fixed beds of spheres. In  contrast to our 
calculations for flow through isotropic fibre beds, we demonstrate that in the limit of 
infinite dilution (where polymers are interacting with only single spheres) there is no 
critical condition or critical value of the Deborah number. In order to determine the 
critical conditions, one must consider the interactions of a polymer with at least two 
spheres, and thus the critical Deborah number is predicted at the next order in a 
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FIQURE 1.  Polymer molecules modelled as dumbbells flowing through a dilute, isotropic fixed 
fibre bed at mean velocity U. The nomenclature used throughout $2 is shown. 

concentration expansion. The physical reasons for this are examined in the light of 
the fore-aft symmetry of the disturbance flow created by a single fixed sphere. In  
particular, it is shown that when this symmetry is broken by the presence ofa second 
fixed sphere, the covariance of the equivalent Gaussian field also changes form. It is 
this change that causes the ultimate critical stretch of a Hookean spring. Thus, it  
becomes clear which interactions in dilute, random fixed beds cause large or ‘super- 
critical deformation ’ and this is quantified with a specific statistical measure. 

In the final section, we examine the effects of close interactions between FENE 
dumbbells and fibres in flow through a fixed-fibre bed. We show that even though the 
average effect of these interactions is of higher order in volume fraction than the 
effects due to long-range interactions, they may be important. This is primarily due 
to the highly stretched ‘strands’ which exist following the rear stagnation point in 
flow past cylinders. This effect has been reported elsewhere (see Harlen 1990; Harlen, 
Rallison & Chilcott 1990 ; Chilcott & Rallison 1988). Scaling arguments are developed 
to determine when these close range interactions are important in dilute beds. These 
arguments include a consideration of a cascade of short-range interactions as a means 
of increasing polymer conformation change - a mechanism that has recently been 
noted in numerical results for flow in periodic fibre arrays by Chmielewski, Petty & 
Jayaraman ( 1990). 

We conclude by looking forward to an experimental investigation of our results. 

2. Polymer stretch in isotropic fibre beds: long-range hydrodynamic 
interactions 

2.1. Linear dumbbell 
We shall begin by considering the conformation of linear dumbbells in a Newtonian 
solvent as they flow under Stokes flow conditions through an isotropic, random bed 
of fibres. The dumbbells are defined by two Brownian beads connected by a Hookean 
spring, cf. figure 1.  It is well known that the Hookean dumbbell is a useful 
approximate model for the deformation of the more exact descriptions of flexible 
macromolecules as many bead chains, when subject to small deformation (see Larson 
1988). We shall also use the model in the present instance to crudely describe larger 
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deformations, although nonlinear dumbbell models will be introduced below. We 
shall assume that the polymer solution is sufficiently dilute that we can safely neglect 
polymer-polymer interactions. Within these assumptions we can define P ( x ,  r )  as the 
probability density for finding a dumbbell with centre-of-mass at position x and 
configured such that the beads are at  positions x+;r  and x - i r .  The probability 
density satisfies a conservation equation of the form 

(1)  
a p  
--D VZP+ v. [u(x)P] -2D v," P +  v; [PP] = 0, 
at 

where u is the centre-of-mass velocity of a dumbbell at  a point in the bed, t is the 
relative velocity of the beads, and V and V, are the del operators with respect to the 
centre-of-mass and the relative bead coordinates respectively. In addition, D is the 
centre-of-mass diffusivity of the dumbbell, and we shall neglect hydrodynamic 
interactions between the beads. Thus, D is given by the scalar Stokes-Einstein 
relation, namely : 

where, c,, is the drag coefficient on the dumbbell which, in the light of the 
assumptions, does not depend on r.  It follows that the correct relative diffusivity 
describing the inter-bead separation, r ,  is 2D as shown in (1) .  Also, we shall begin by 
assuming that the spring is Hookean and that the flow always scales on lengths which 
are much larger than the size of the dumbbell itself. Under these conditions we obtain 
the following relation for P: 

where 5-l is the ratio of the drag on a single bead to the restoring force of the linear 
spring, or, in other words, is the characteristic time for the spring to relax upon being 
stretched (see Larson 1988). 

In  the absence of flow, the steady solution of (1) demonstrates that the equilibrium 
radius of gyration, R, = (m)f (where the overbar refers to an average over the 
configurational distribution function Q ( r ) ) ,  is such that 

D = kT/CD:,, 

P = r .Vu(x)- i&,  (2) 

Ri = 12D/<. (3) 

With flow, however, P becomes a function of the entire configuration of the fixed 
particles because both the centre-of-mass velocity and the velocity gradient depend 
on all the hydrodynamic interactions within the fixed bed. This can be simplified if 
we restrict ourselves to dilute beds where the interactions of the dumbbells with 
single fixed fibres (through an averaged or Darcy medium) give the largest 
contribution to the evolution of the dumbbell conformation. For dilute beds, we can 
then use the method of averaged equations (see Hinch 1977; Koch & Brady 1986; 
Shaqfeh & Koch 1988a, b)  to average (1)  and then truncate based on diluteness. In 
addition, if we assume that the polymer solution is sufficiently dilute, then the flow 
field experienced by a given polymer will not be significantly different than that 
which occurs in the Newtonian flow through the bed. The following development is 
very similar to that presented by Shaqfeh & Koch ( 1 9 8 8 ~ )  in their consideration of 
orientation of particles in the Newtonian flow through fixed beds, and thus we shall 
only outline the important steps. 

First, we shall make all positions x dimensionless with K; which we recall is the 
Darcy pore size or screening length in the fixed medium. The permeability, K is 
known for the Newtonian flow in isotropic, dilute fibre beds both through theoretical 
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calculation and through many careful experiments (see Spielman & Goren 1968 ; 
Howells 1974; Koch & Brady 1986; Jackson & James 1986). It is given 
approximately by the relation 

where a is the radius of the fibres in the bed. 
Next, we make all velocities dimensionless with U ,  the magnitude of the average 

velocity through the bed. This also gives a characteristic timescale K ~ / U  which is the 
average time that a polymer molecule spends interacting with a given fibre in the 
bed. Finally, we shall make all relative bead positions dimensionless with R,. With 
these non-dimensionalizations (1  ) becomes 

and 

1 
v ~ P + u ( x ) ~ v P - - v , 2 P + v , . [ i P ]  = 0, 

ap 1 _-_ 
at Pe 6De 

where the PBclet number, Pe, and the Deborah number, De, are defined 

Pe = U h / D ;  De = U / ( ~ K ; ) .  ( 5 )  

Note that in writing (4a )  we have neglected any disturbance velocities created by the 
small dumbbells and thus their centre-of-mass velocities become incompressible. 

In (4 )  and ( 5 ) ,  the PBclet number is the ratio of the time that it would take a 
polymer to diffuse across a screening length to the time it takes to be convected 
through the same distance. Since the translational diffusivities of macromolecules are 
small, the PBclet number will generally be very large. We will take the PBclet number 
to be sufficiently large that the centre-of-mass diffusion (i.e. the second term in (4a ) )  
can be neglected. 

The Deborah number is the ratio of a polymer relaxation time, (<)-l, to the time 
it takes for a polymer to flow through a Brinkman screening length. (Alternatively, 
it  is the product of ([)-’ with a characteristic shear rate U / K ~  in the pores of the bed.) 
In the subsequent analysis we shall emphasize the case in which the polymer’s 
relaxation during its interaction with a given fibre is small and thus De % 1. It will 
be seen that this is the only case in which significant polymer stretch created by long- 
range interactions occurs. 

Our main task is to derive an averaged equation for the non-equilibrium 
conformational distribution function, 52(r), averaged over the configuration statistics 
(i.e. positions and orientations) of the fibres in the bed. The function 52 is defined (in 
dimensionless variables) through the relation 

Q(r )  = - P(x ,  r )  dx, “I V 

with the normalization condition 

drQ(r) = 1 ,  

where we have made P ( x , r )  dimensionless with n,/Ri (np is the number density of 
polymers in solution) and 52 with l / R t .  We shall use two types of averages over bed 

I 
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particle configuration: (i) an unconditional ensemble average, denoted by ( . ), over 
all the positions and orientations of the fixed fibres in the bed, and (ii) a conditional 
average, denoted by ( *),, in which the average is taken over the sub-ensemble with 
a single fibre held fixed at a given orientation. 

The derivation of the equations for the unconditionally and conditionally 
averaged conformational probabilities are directly analogous to those for the 
averaged orientational probabilities given by Shaqfeh & Koch (1988u, b). The 
analogy follows since the relative position of the beads, their relative velocity and the 
Deborah number are analogous to the orientation of the tracer particles, their 
rotation rate and the rotary PBclet number in our previous analysis. The .relative 
position of the beads responds to the fluctuating local velocity gradient experienced 
by the dumbbell as it flows through the bed in a manner analogous to the way in 
which tracer particles change orientation as they rotate in the fluctuating field. The 
relative velocity induced by the spring force between the two beads has no similar 
analogy, but this is easily averaged because it does not depend on the fixed-bed 
geometry. We assume that all flow fields are governed by the Stokes equations and 
therefore both inertial effects and elastic stresses can be neglected in their calculation. 

An outline of the derivation is as follows. First, we unconditionally average ( 4 )  and 
then break the nonlinear averages based on diluteness, keeping only the leading- 
order terms for small & We thus obtain (cf. (62) of Shaqfeh & Koch 1 9 8 8 ~ )  

--- 
RU 

a(Q) dRV,.(i’),(P), = 0, (6) 
at 6De 

where (t’), = r.V(u’), and (P), = (P) , - (52) .  In  addition, (u‘),  = ( U ) ~ - ( U )  is 
the conditionally averaged velocity disturbance created by a single fibre in the 
fibrous bed. In deriving (6) we have used the facts that : (i) quantities averaged with 
a single fibre held fixed are only functions of the vector R which lies in the plane 
perpendicular to the local orientation vector, e, of the fibre; (ii) the dimensional 
probability of a fibre passing through any given point in the random bed is 
($Ja2n)g(e) where g(e) is the probability density of orientation; and (iii) ( t )  = 0 since 
the dimensionless, bed-averaged velocity is a constant, namely 

( u )  = U/U = i,. 

To complete the evolution equation (6 )  we need to derive the expression for 
This is accomplished by averaging (4)  conditionally. After some manipulations we 
obtain the coupled equations for the averaged probability distributions in a fixed bed 
of fibres (cf. (46) and (47) in Shaqfeh & Koch 19883): 

1 
We 

V:(P‘),--V,.[r(P‘),] = -d7,.[(t’),<Q)], (73) 
1 

6De 
+sV,.(t‘),(P‘),-- 

where e = l/ln(d/u) 6 1. In arriving at  (7u, a) we have used the fact that in a bed 
of fixed fibres 

l(u’>,l - O(4  
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(Koch & Brady 1986; Shaqfeh & Koch 1988b), and we have rescaled both (u’), and 
(i’), with e such that they will remain 0(1) throughout the analysis. 

The detailed derivation of (7a, b)  involves a number of important steps and 
consequences, which are discussed in our previous publications (see Shaqfeh & Koch 
1988a, b).  Probably the most important is the realization that since (3) = 0, any 
polymer stretch or any change in the conformation density function, (a),  from its 
equilibrium value must arise solely as a result of the velocity fluctuations in the bed. 

In the limit of small e and large Deborah number, the function (P), can be 
determined to a first approximation as 

where Z is defined as the coordinate in the R-plane which runs along the direction 
i,. (/-ee), and X is a second orthogonal coordinate in the same plane. Substituting 
this result back into (7a) and noting that V,.(r’), = 0, we obtain the final evolution 
equation 

where ASkmn is defined 

We note for future reference, that in the results above and throughout the remaining 
discussion, we shall use Einstein or indicia1 notation where repeated indices imply 
summation. From (8) i t  is clear that the leading-order effect of the hydrodynamic 
interactions in the fixed bed is to create a conformation-dependent diffusion, 
characterized by the correlation function, A j k m n .  This function is the average over 
the plane containing the vector R of the conditionally averaged velocity gradient 
correlated with all previous velocity gradients along an approximately straight 
polymer flow path. It has been determined for an isotropic bed in our previous 
publication (see Shaqfeh & Koch 1988b), namely 

Ajkmn = P l [ ( s k n - s k 3 s n 3 )  ~ s i 3 s m 3 ~ 1 ~ ~ 2 ~ s ~ k s m n ~ s i n s k m ~ 3 s i m  skn-sj3sk3smn 

- s k 3 s m ~ s i n - s ~ 3 s n 3 s k m - s m 3 S n 3 ~ ~ k + 2 s S 3 s m 3 s k n ~ 3 s k k 3 S n 3 6 j m l ~  (lo) 

In (lo),  i3 = i, and P1 and Pz are positive functions of the volume fraction df that 
approach constants in the dilute limit. The constant values have been determined in 
our previous publication (cf. Shaqfeh & Koch 1988b), namely 

where fll and f, are the dimensionless force per unit length for flow parallel and 
perpendicular to the fibre’s orientation. In the dilute limit, fir - 2~ andf, - 4x. We 
recall, as discussed by Shaqfeh & Koch (1988b), that the second term in (lo), which 
is proportional to Pz, arises from the fact that the disturbance velocity is not fore-aft 
symmetric about the direction of the mean flow for fibres of arbitrary orientation. 
This follows sincef,, andf, are not equal. If they were, then PZ = 0, and only the first 
term in (10) would remain. 
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To simplify the form of (8) and the subsequent analysis, we shall rescale the time 
with the characteristic relaxation time of the polymer. Therefore, defining T = t /De  
and D = 2Deq5,Ks2/(na2) (where D can be interpreted physically as the Deborah 
number based on the shear rate characteristic of the velocity fluctuations in the bed) 
we obtain a modified form of (8): 

a(Q) at ! jV;(r (52) ) -V;dh.V, (Q)  = 0 ( 1 2 a )  

and d;m = 4 k@jm + DAjkmn rk r n l .  ( 1 2 b )  
Although we shall return to some of the characteristics of the solution for the 
distribution function, ( Q ) ,  which satisfies ( 1 2 a ) ,  here we shall concentrate on the 
moments of the distribution. In particular, we shall examine the second moment in 
detail. Although this choice may appear to be somewhat arbitrary, a number of 
important physical quantities can be calculated from the second moment (including 
the radius of gyration, the birefringence, and the mean entropic stress in the 
suspension) and, moreover, we shall show that the important qualitative features of 
the functionality of other moments with the Deborah number are demonstrated by 
that of the second moment. 

Thus, multiplying ( 1 2 )  by rr and integrating over all conformational space, we 
obtain after a number of manipulations 

where the overbar refers to an average over the distribution function (Q), 

Note that to obtain a closed equation for the second moment defined by (13) we did 
not have to introduce approximations for higher moments or truncate an infinite 
series of coupled moment equations arbitrarily. This is a consequence of the 
quadratic form of the diffusivity d” (see Lundgren 1981). 

Because of the symmetry of the physical system, we need only determine the 
magnitudes of the projections of the dumbbell in the plane perpendicular to the 
average flow and in the flow direction itself, to completely specify G. Thus 

and 

Therefore, if we substitute our expression for Ajlcmn into (13), then after -- some 
- manipulations we can obtain the following three differential equations for r2,  ri  and 
p 2 :  

dp 
- + ? - 1 - 2 D ( 5 / 3 2 + p l ) 7 =  d7 0, (15a) 

d 2  
dr 
-+3-$-2D (p,+p,)p = 0, 

d p  - - 
-+p2-5-4Dp2p2 = 0. 
d7 
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Pore-size Deborah number 
FIGURE 2. The dimensionless radius of gyration for flow through an isotropic fibrous bed vs. De, for 
bed volume fractions of 0.01, 0.025, and 0.05. The model for the polymer is a Hookean dumbbell 
and the critical conditions are indicated at the bottom as solid triangles. 

If we assume that the polymer is initially in an equilibrium conformation then the 
solutions of (15a-c) are 

where s = 1-4DPZ. It is clear from (16) that the parameter space of the Deborah 
number can be separated into two regions. If s > O  then the solutions for the 
moments of the dumbbell reach a steady solution in the long-time limit, and this 
steady solution can be summarized by the following equations : 

Note that from (17), it is also clear that the effect of the flow is to increase the size 
of all the moments over their equilibrium values. 

However, if s < 0 there are no steady solutions to (15). Instead, the solutions 
defined by (16a-c) grow in time without bound. This can be examined if we first note 
that for s = 0, 

Substituting the known results P2, K; and s for dilute fibrous beds (Shaqfeh & Koch 
1988a, b )  (cf. (3), ( 7 b ) ,  and ( l l b ) )  into (18b) ,  we obtain 

Decrit = 5.40.. . In ( l/q5f). (19) 

The results for 
for 2 and 

us. De for q5f = 0.01,0.025, and 0.05 are plotted in figure 2 and those 
vs. De are portrayed in figure 3. An examination of these figures leads 
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*...*- 

Pore-size Deborah number 
FIUURE 3. The steady, root-mean-squared moments of the linear dumbbell 0.9. De, for flow in an 
isotropic fibre bed. Both the moments perpendicular and parallel to the mean flow are shown. There 
are no steady solutions for either component past the critical condition Deertt = 19.9 shown at  the 
bottom as a solid triangle. The bed volume fraction is 0.025. 

immediately to three important conclusions. First, for all 0 < De < 5.4 ...In (l/q$) 
the steady stretch in the direction of flow is significantly larger than that in the plane 
perpendicular to flow. - -  As one approaches the critical condition, (De)crit = 
5.40 In (l/q5f), the ratio ~ i / p ~ + 6 . 1 3 1  ... . It follows that the surfaces of constant 
probability density, (Q) = constant, are bodies of revolution with their principal 
axis lying along the flow direction and their aspect ratio increasing with increasing 
De to approximately 6 near the critical condition. 

Secondly, we note that at the critical point, [DeIcrft = 5.4 In (l/$f), the steady 
predictions for both and 7 become unbound. For s < 0, from (16u-c) we fhd that 
both moments grow exponentially in time without bound. Furthermore, we note 
that at  s =  0, the growth in time is again unbound, but algebraic, as one can 
demonstrate by taking the limit of the results in (l6u-c) a8 s+O. The behaviour in 
a fibrous bed of volume fraction q5f = 0.025 is depicted in figure 4, where we have 
plotted (@ vus. 7 for various subcritical and supercritical values of the Deborah 
number. 

Thirdly, if Ba = 0, or, in other words, if the disturbance velocity created by the bed 
particles were always fore-aft symmetric about the mean flow direction, then there 
would be no finite critical Deborah number (cf. (18b)). This is important in an 
analysis of other fixed-bed structures, which we consider in $53 and 4. 

In  discussing these results, one should keep in mind, that there are definite 
limitations of the Hookean dumbbell aa a model for describing the deformation of a 
polymer molecule in flow. In  the simplest example, the conformation change and 
stretch exhibited by a polymer molecule is clearly limited by its maximum end-to- 
end length. No such limitation exists in the Hookean spring model. Furthermore, 
entropic considerations demonstrate that a polymer which is stretched by a large 
amount relative to its equilibrium radius of gyration, will recoil via a force that is 
nonlinear in its end-to-end distance (Tanner 1985 ; Larson 1988). Moreover, recent 
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d 

5 .  

Dimensionless time, t [  
FIGURE 4. The radius of gyration of a linear dumbbell vus. time for flow through an isotropic fibrous 
bed at subcritical and supercritical values of the pore-size Deborah number (Decrit = 19.9). The bed 
volume fraction is 0.025. 

studies demonstrate that, in certain extensional flows, the polymer will adopt a 
certain folded conformation in the presence of strong extension (Larson 1990). This 
conformation tends to unravel very slowly by comparison to the time necessary to 
attain the folded state. In $2.3 we shall consider a certain finitely extensible 
dumbbell model (FENE), i.e. the Warner dumbbell (Tanner 1985; Larson 1988), and 
examine its conformation change in flow through isotropic fibre beds. 

There is another physical mechanism by which the singularity in the stretch of a 
Hookean dumbbell can be removed in these beds. We have consistently neglected the 
polymeric stresses in calculating the velocities within the bed based on the assumed 
diluteness of the polymer solution. However, for any small but finite concentration, 
if the polymer stretch becomes large enough, this approximation will become invalid 
since the elastic stresses will scale like n,[p]i. One may then ask the question whether 
the change in the velocity field induced by these polymeric or elastic stresses will 
actually mitigate the large extension incurred by a linear dumbbell? Thus, it is 
imagined that a t  large values of the Deborah number the dumbbells approach a finite 
but large radius of gyration because of the differences between the disturbance 
velocity fluctuations created in an elastic fluid versus those in a Newtonian liquid. 
Rallison & Hinch (1988) have shown that for steady strong flows, such as purely 
extensional flow, the ‘coil-stretch ’ transition is not prevented by these large elastic 
stresses. However, in initial studies we have shown (Koch & Shaqfeh 1990) that the 
first effects of the polymeric stresses are to mildly reduce the stretch incurred by a 
polymer in a fixed bed of fibres. Only further research can resolve this question. In 
the present discussion, we will continue to assume that the polymer concentrations 
remain sufficiently small such that the polymer stresses can always be neglected. One 
might keep in mind that for any finite concentration this approximation is not a good 
one for sufficiently large polymer deformation. 

Regardless of the questions discussed above, the results in (17)-( 19) demonstrate 
that beyond a certain critical Deborah number, large polymer conformation change 
and stretch can be expected in the flow through an isotropic fixed fibre bed. This 
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effect occurs in the presence of a mean flow which, by itself, would create no stretch 
in the polymer whatsoever. The effect is therefore fluctuation-induced and created by 
hydrodynamic conformational diffusion. We shall investigate this phenomenon in 
more detail in the following section where the meaning of the critical condition is 
examined in terms of the distribution function, (52). 

2.2. Algebraic decay of the distribution function, (52) 
Although the critical Deborah number was defined in the previous section in terms 
of the second moment and its characteristics, we can relate this critical phenomenon 
to more general characteristics of the distribution function, <In). To do this, we 
return to (12) which becomes (in the coordinates p and r3 E z )  

i a  i i a  a 1 a 2  
p2 (52) - -- 2 (52) - - - - p - (52) - -- (52) a(Q) 1 a 

a7 2pap 2 a2 6PaP aP 6 Clz2 

along with the normalization condition 

Although it is difficult to make progress analytically with the system defined by (20) 
and (21), it  is easier to work with the reduced distribution, w(p),  which is defined: 

where 

Integrating (20) over the range - co < z < GO and assuming that 52 decays sufficiently 
rapidly that the integral in (22) exists, we obtain at  steady state 

For p 9 1, (23) becomes 

gD p2p2 w"++[P+ 3D pzp] w'+ w = 0, (24) 

where the primes in (24) indicate differentiation with respect to p. Equation (24) is 
equidimensional and mathematically represents the balance of the spring restoring 
force and the hydrodynamic diffusion. The important point is that the hydrodynamic 
diffusion dominates over the Brownian diffusion when the polymer is in a highly 
stretched conformation. 

The solution of (24) is of the form 

w w p-" (25) 

and substituting (25) into (24) gives a quadratic equation with two possible solutions 
for 01, 

1 
a = 2,- 

DPZ' 
2-2 
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If a = 2 then ;;" does not exist even in the absence of flow. It follows that 
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a = 1/(DP2) 

and steady solutions for w decay for p % 1 like w x p-ll0@,. In order for 7 to exist 
then, from (25) and (26), the integral 

must exist, which once again gives the restriction 4p2 D < 1. This is identical to 
(18a). Therefore, it is clear that the critical condition is directly related to algebraic 
tails in the distribution function w (and in 52 as shown below). These algebraic tails 
indicate that there exist enough polymers in a highly stretched conformation in order 
to render impossible any attempt at  calculating the steady second moment of the 
distribution function. 

The fact that these algebraic tails create essentially 'infinite ' (long-time) moments 
in the present analysis is, to a certain degree, a product of the aphysical character of 
the Hookean dumbbell in describing highly stretched polymers. For any polymer 
model which includes finite extensibility, all moments of the distribution function 
exist for all values of D as a direct consequence of the finite domain of a. In that 
instance, we would expect that, for values of D beyond the condition (18a), enough 
polymers will be highly extended such that (and [PI;) will be significant fractions 
of the maximum extension length of the polymer. This will be verified in the next 
section. 

The qualitative features of the transition described in $82.1 and 2.2, bear strong 
similarities to that described by Lumley (1972) and Jhon et al. (1987) in their 
considerations of polymer stretch in model turbulent flows. The transitions which 
these researchers reported were also fluctuation-induced, but the transitions were 
time-dependent and occurred in the absence of any mean flow. In addition, for simple 
Hookean spring models, they were a consequence of the algebraic tails in the 
probability density function. Although much of the physical details of the problem 
considered herein and that analysed by Lumley (1972) and Jhon et al. (1987) are 
quite different, we shall investigate in $ 3  whether there are any common physical 
principles governing these transitions. 

Finally, although (25) and (26) merely demonstrate that an algebraic tail exists in 
the distribution w(p) ,  this result can be extended to the distribution 52. If we notice 
that when D is written in the spherical coordinates r and 8 (defined 

p = T sin 8, z = r cos O), 
then for r % 1, (20) becomes equidimensional in the coordinate T .  If we retain only the 
equidimensional terms in (20) then, at steady state, we have 

The similarity solution of (28) is of the form 

LR = pyf(z/p) = rv sinvBf(cot 8). (29) 
If we return to the definition of w(p) ,  (22), then for p % 1 

00 

Kp-llD@p = pr+l l - m f ( ~ ~ t  0 )  d (cot B) ,  
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where K is a constant. It follows that 

1. 
1 

Y = 
W Z  

Equation (31) along with (29) is consistent with the critical condition (18) when 
evaluating 7. 

2.3. Finite estensibility 
In  the previous sections, we demonstrated that a polymer molecule, modelled as a 
Hookean spring, will undergo a large conformation change or stretch beyond a 
certain critical pore-size Deborah number in flow through an isotropic bed of fibres. 
For conformational changes which are large compared to the equilibrium radius of 
gyration, we expect from both theoretical and experimental work (Tanner 1985 ; 
Larson 1988) that the restoring force will be nonlinear. To be specific, instead of 

f 
1 -  2 r 1  

where f is the spring force, we expect 

where h +co as r/ro + 1,  and ro is the maximum radius of extension for the polymer. 
We further expect (if the polymer is of large molecule weight), that BJr0 4 1 where 
R, is the equilibrium radius of gyration. In  addition, to be consistent with 
the Hookean spring model for small conformational changes, we require h+ 1 for 
r / r o  Q 1 .  

Substituting the model equation (32b) into (2) and proceeding with the 
manipulations leading to (12), we arrive at  

where 

rQ-V, .d”.V,Q = 0, 

and where one must remember that all lengths have been made dimensionless with 

which is not the equilibrium radius of gyration, R,, because of the influence of the 
nonlinear spring force. However, the difference between R, and [ lu>/lJi is not a large 
one if R; S= 1.  

Because the solution of (33) is, again, difficult to obtain analytically, we wish to 
average (33) and thereby determine information about the moments of Q. 
Unfortunately, averaging (33) introduces nonlinear averages (because of h) which 
cannot be exactly closed. We therefore employ the preaveraging approximation 
which gives 

[l W E I i  

a(a) :V,. h ( p / R i )  r (a )  - V , .  d” - V ,  (a)  = 0, (34) 
a7 

where we have set h(r2/Ri) equal to h(p/Ri )  as a first approximation. Such a 
formulation has been shown to give qualitatively correct results for polymer 
conformation changes in situations where one encounters large polymer deformation 
(Tanner 1985). We can now multiply (34) by r, r, and average over the distribution 
function to obtain the analog of (13), namely 
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We choose for h(P/Ri )  the Warner spring function 
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The restoring force given by (32b) along with (36) is a good approximation to the 
exact statistical mechanical restoring force for a freely jointed chain in the limit as 
the number of joints approaches infinity (Larson 1988; Tanner 1985; Bird et al. 
1987). 

Substituting the model equation (36)  into (35) ,  we obtain a nonlinear equation for 
G. At steady state and in the absence of flow, this yields 

Therefore, within the context of this model, the equilibrium radius of gyration is 
given by the expression 

or R: x 12D/[ for Ri $- 1 with errors which are O ( l / R i ) .  -- 
The general nonlinear, time-dependent equations for ?,p2  and are, from (35) ,  

d P  
dr  
-+ hP-  1 - 2D(5p2 +PI) p = 0, 

d< 
-+hG-4-2D( /4+P2)7  = 0, 
dr 

where h = h[P/Ri ] .  In what follows we shall concentrate on the steady-state solution 
for 7. This can most easily be obtained by using (38c) (at  steady state) to obtain an 
algebraic relationship between 7 and 7, then substituting directly into (38a)  to 
obtain a quadratic equation for x = 7. The resulting quadratic is 

(( 1 - s) y+a} x 2 +  (s + y + 2yg) x - a- 1 = 0, (39) 

where, u = C(p,-p2) D, and y = l / R i .  Only one of the two solutions to (39) has 
physical meaning, since the second gives negative values for 7 even in the limit as 
D += 0. The final solution is therefore 

(40) 
- [s + y( 1 + 2 4 1  + ([s + y( 1 + 2r) ]2+ 4y(  1 - s - ya) (a + 1)); 

2 y [ l - S - y a ]  X =  

In figure 5,  we plot (1 +Ri)  x/Ri = P/R; us. De for fibre volume fractions = 0.01, 
0.025, and 0.05. For s = 1 -4/3,IID greater than zero the qualitative behaviour is very 
similar to that pictured in figure 2. As the Deborah number increases, the 
dimensionless radius of gyration increases and, near the critical point s = 0, begins 
to undergo a large change. However, for s d 0 this large stretching transition is 
bound by the finite extensibility of the dumbbell. For very large Deborah number, 
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0 10 20 
Pore-size D 

FIGURE 5. The radius of gyration of a FENE (M 
fibre bed. The dimensionless maximum radius R, = 50 and the bed volume fractions are 0.01, 
0.025, 0.05 as shown. 

................ 

30 40 50 60 
leborah number 

Jarner) dumbbell vs. De in flow through an isotropic 

Pore-size Deborah number 
FIGURE 6. The steady radius of gyration of a Warner dumbbell for flow through an isotropic fibre 
bed 21s. De a t  various values of the dimensionless maximum radius, R,. The critical Deborah 
number for the Hookean dumbbell is 19.9 at a bed volume fraction of 0.025. 

it can be shown from (40) that x + R i ,  if Ri D 1 -that is to  say the dumbbell 
approaches its maximum extensibility. The behaviour of the FENE dumbbell is 
shown even more clearly in figure 6, where we plot (1 +Ri) x/Ri  us. De at fixed 
volume fraction for R, = 32, 50, 75, 100, co. 

The qualitative differences between our results using the FENE model versus the 
Hookean spring were perhaps easy to predict a priori. However, most interesting 
about our findings is their striking comparison to the predicted coil-stretch transition 
of FENE dumbbells in strong purely extensional flows. In  figure 7 we have plotted 
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i i 1 .- i i ................... i I 
0 0.5 1.0 1.5 2.0 

Deborah number, &A 
FIGURE 7. The dimensionless radius of gyration of a Warner dumbbell in a planar extensional flow 
us. De at various values of the maximum extensibility, R,. The De is defined as 6h where 6 is the 
strain rate. The well-known critical condition for a linear dumbbell is De = a. 
the steady radius of gyration 7 versus the Deborah number (defined as 6h where 8 
is the rate of strain) for a Warner dumbbell in a planar extensional flow. These results 
are well-known and can be found in any number of texts concerning polymer 
rheology (see for example Bird et al. 1987). For such a dumbbell model in an 
extensional flow the tensor rmrn satisfies the equation 

- 

- D e [ G  E,, + =Eim] + h[P/Ri] = fa,,,, , 
where E ,  is the dimensionless rate-of-strain tensor, and where we have again used the 
preaveraging approximation. It is easy to show from these equations that the ‘strong 
flow criterion ’ for planar straining flow is De = Bh 2 t .  Beyond these strain rates, the 
polymer stretches to a large fraction of its maximum length. Comparing figures 6 and 
7 we see that in terms of the qualitative behaviour of the radius of gyration, these 
two transitions are very similar. These results suggest that any measuring technique 
(such as flow birefringence) sensitive to the steady second moment of the distribution 
function should see much the same behaviour in the two flows. (The strong flow 
criterion for the fluctuation-induced transition in the fixed-fibre bed will be discussed 
in the next section.) 

3. Polymer conformation in equivalent Gaussian fields 
In the previous section, we demonstrated that when a polymer moves through the 

stochastic flow field in a dilute, isotropic fibre bed it can become highly stretched 
simply through its sampling of the long-range, hydrodynamic fluctuations. In this 
development we have treated the diffusive process of polymer conformation change 
via the method of averaged equations that we have used elsewhere in our study of 
particle orientation in fixed beds (Shaqfeh & Koch 1988a, b). However, recently, 
Koch & Shaqfeh (1992), have used diagrammatic methods to treat the problem of 
time-dependent tracer dispersion in Gaussian random velocity fields and applied 
these results to mechanical dispersion in flow through fixed beds. In  the present 
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application, we seek to relate our results described in the previous section to an 
equivalent problem where a polymer molecule's conformation changes in a certain 
Gaussian flow field. We can then use techniques to develop well-known approxi- 
mations (e.g. the direct interaction approximation (Kraichnan 1959 ; Roberts 1961)) 
for describing the evolution of polymer conformation in this equivalent flow. 

In the Appendix we demonstrate explicitly that, in the dilute limit, the stochastic 
flow field in a fixed bed of fibres or spheres induced via the long-range hydrodynamic 
interactions can be replaced, in so far as tracer dispersion, pair dispersion, or polymer 
conformation change is concerned, with a certain anisotropic Gaussian flow field. 
Mathematically, this means that, to leading order for dilute beds, (4a, b)  can be 
replaced by 

--D V2P + [ Ui, + w(x) ]  - VP - 20 V,Z P + V, - [+PI = 0, (41 a) at 

and r = r-Vw-t&, (41 b )  

3P 

where w(x)  is an anisotropic Gaussian velocity field. Thus, the probability density 
function defining w can be completely specified by the covariance of w, which is 
defined 

where the angle brackets now refer to an average over the Gaussian statistics of the 
field. The equivalence of (41a, b)  and the original problem defined by (1) and (2) 
follows from the fat that, in the dilute limit, the long-range hydrodynamic 
fluctuations created by the bed particles are considered to be independent. However, 
a given polymer molecule interacts simultaneously with a large number of bed 
particles since the interaction length (i.e. the Brinkman screening length) is large 
compared to the characteristic length scale of the particles. In  dilute beds of spheres, 
a given polymer interacts with an O ( d )  number of bed particles, or equivalently an 
O(l/@) number of particles (Koch & Brady 1985; Shaqfeh & Koch 1988 a, b ) .  In 
dilute beds of fibres a given polymer interacts with an O[#, K / R ~ ~ ) ]  or, equivalently, 
an O[ln (l/q4)] number of fibres. Clearly, in the limit as q5f+0 a given molecule 
interacts with a large number of random, independent fluctuations and thus, as a 
direct consequence of the central limit theorem (Van Kampen 1981), we can replace 
these fluctuations with a Gaussian-distributed field. The details of this procedure are 
provided in the Appendix. 

The covariance d(x,x') has a precise meaning in terms of the conditionally 
averaged disturbance velocity (u'), (cf. (7) and following) created by particles in the 
fixed bed. For example, for random fibre beds (see the Appendix) 

A(x,x')  -= ( w ( x )  w(x')) ,  (424  

A = 4 deg(e) dR (u'),(x I e, R )  (u'),(x' I e, R), (42 b)  
RU $ 1  s 

where R , e ,  and g(e) are defined in the discussion following (6). It follows that the 
covariance for the equivalent Gaussian field in a fixed bed is of a special form. In 
particular, since the beds are assumed homogeneous, translational invariance 
requires that transform of the covariance, defined as 

dx'e""''x'A(x,x'), (43) 

satisfies the following relations : 

d(k, k') = ( w e ) )  = ( 2 ~ ) ~ 8 ( k + k ' )  ($(k) $( -k)) 
= (2R)3s(k+~) ( w i ~ ) .  (44) 
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In addition, we note that ($(k) $( - k ) )  can only depend on the vectors 0 = U/l 
= i, and R = k/lkl, and, moreover, since the disturbance fields created by the fixed 
bed particles are solenoidal, 

k * ( $ ( k ) $ ( - k ) )  = ( $ ( k ) $ ( - k ) ) * k  = 0. (45) 

It follows that for any homogeneous, dilute fixed bed d must be of the general form 

(46) 

In (46), K ,  and K ,  are scalar functions of k and 0 - k  = k,. These functions can be 
determined for any given fixed bed structure via the methods discussed in detail in 
the Appendix. Furthermore, the first term on the right-hand side of (46) can be 
characterized as the 'anisotropic ' part of the covariance and the second term the 
'isotropic' part, since the latter is of the form that the covariance would take if the 
stochastic field were isotropic and incompressible. Only the second term was included 
in the covariance in previous research regarding the effect of stochastic fields on 
polymer conformation (see Lumley 1972 and Jhon et al. 1987). The first term is 
introduced solely because of anisotropy associated with the fact that the fluctuations 
(i.e. the disturbance velocities in the bed) are created by the presence of a mean flow 
U. 

We are interested in the average behaviour of a polymer molecule as it samples the 
stochastic Gaussian field. To develop an approximation for that behaviour, we first 
make (41a, b )  dimensionless to obtain equations analogous to (4a, b ) ,  namely 

Jij = ( 2 7 ~ ) ~  6(k + k') [K,  Urn( 6,, - &, E , )  (S,, - &, &,) + K2( 6, - &,)I .  

ap ap 
at a Z  
-- [Pel-' V 2  P + - -  [6De]-' V,Z P + V ;  [+PI = - we V P ,  

r = r - V w - i r D e ,  (47 b )  
where Pe and De are as defined in ( 5 ) .  Note that the characteristic length d now is 
the correlation length of the velocity fluctuations w in the equivalent Gaussian field. 
This follows directly from (42b). We now consider the Green function, G ( x ,  r ,  t ) ,  of the 
stochastic differential equations (47), where we add to the right-hand side the source 
term S(r ,  x, t )  = 6(x) 6 ( r )  6( t ) .  Therefore, G satisfies 

---[Pel-' aG V2G+--[6De]-1V,2G- aG [2De]-1V,-rG 
at aZ 

= - V; [ ( r  - Vw) GI - w - V G  + 6(x) 6(r)  6 ( t ) .  (48) 

We seek appropriate solutions for (G). 
To motivate our solution method, we briefly summarize the analysis of a simpler 

stochastic differential equation considered in our previous publication (see Koch & 
Shaqfeh 1992). We consider the Green function, G ( x ,  t )  which satisfies the equation 

{ g + i } G  = 6 ( x ) G ( t ) - w - V G .  (49) 

Equation (49) describes the spreading of a passive tracer in a stochastic flow field 
where the dimensionless mean velocity is i, and w is the perturbing stochastic field 
(see Roberts 1961 ; Koch & Shaqfeh 1992). In our previous work, we developed useful 
approximate solutions to (49) for (G) by first Fourier transforming in space and time 
to yield 

Q k ,  w )  = B,(k, w )  + 6, T(k) B(k, w ) .  (50) 
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In (50),  k and w are respectively the wavevector and frequency in the transform 
domain and 6, is defined 

1 

(51) 
1 

i(w + k,) * 

Go = 

In addition, T(k)  is an operator defined such that ,. 

where 

T(k)d (k ,w)  = -i k.f i (k-k')@(k') ,  
J k  

As has been shown previously, one can average (50) and apply renormalized 
perturbation theory (see Kraichnan 1959 ; Roberts 1961 ; Koch & Shaqfeh 1992) to 
derive the direct interaction approximation (DIA) for (8), namely 

1 
i(w + k,) + kk :D(k )  ' 

( 6 )  = (53) 

where D(k)  is a non-local diffusivity tensor defined 

D = ( f i (k-k ' ) f i (k ' -k) ) (&)(k ' ,w) .  (54) 
J k  

This approximation is particularly good for 'weak ' fluctuations, i.e. 

and time long compared to that necessary for the mean flow to traverse the 
correlation length of the fluctuations. In this dual limit, the DIA gives the correct 
long-time behaviour for (0). Note that we are interested in situations where the 
fluctuations are weak, since the conditionally averaged disturbance velocities are 
small relative to the mean flow at distances of O(d) from the bed particles (cf. (7) and 

If we denote by ( d ) ,  the Green function for long time, then for weak fluctuations 
we have (as demonstrated elsewhere, see Roberts 1961 ; Koch & Brady 1985; Koch 
& Shaqfeh 1992) 

l(fi(k) 4 - W )  I < 1, 

(42a)). 

1 

i(w + kc) + kk:D" ' 

where Dm is the long-time, constant diffusivity created by the fluctuating velocity 
field and is the wavenumber in the two-dimensional plane perpendicular to 0, i.e. 
& = (S6,- 4 4) k,. The result (55c) is equivalent to that derived by Koch & Brady 
(1985) (for mechanical dispersion at large PBclet number) and briefly discussed by 
Koch & Shaqfeh (1992). 

We can now apply the same techniques to the solution of (48). Defining the 
transform of G(x, I, t )  through the expression 
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we can transform (48) to yield the expression 
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i(w+k,) 8+ (Pe)-' k 2 8 +  (6De)-' a2 8+ (2De)- 'a-V,8 = P ( k ,  a )  8+ T(k) 6+ 1 ,  
(57a) 

where T"(k,a)8 = (k , -k;)G, , (k-k')d.  (57 b )  

Note that (57 a ,  6 )  are now stochastic integro-differential equations since 

V,.rG = -a .V,G.  

However, this does not prevent us from applying renormalized perturbation theory 
to calculate the DIA. Since the fluctuations are 'weak' in the sense described 
previously and because we are most interested in conformational diffusion rather 
than centre-of-mass diffusion, we shall neglect the fluctuations in the centre-of-mass 
position, i.e. the T-operator in (57a) throughout the remaining development. This 
small centre-of-mass diffusion will create negligibly small changes in the con- 
figurational diffusion as we shall indicate below. Neglecting the centre-of-mass 
fluctuations, it follows directly that the DIA for 8 becomes the solution of the 
following equation in wavenumber space : 

i(w+ k,)  (8) +[Pel-' k2 ( 8 )  + [6De]-' a2 ( 8 )  + [2De]-'a. V ,  (8) 
= aia,,dij(8)+1, (58) 

where d ,  is the configurational diffusion operator, defined 

Equation (59) represents the non-local configurational diffusion created by the 
fluctuations. For large values of the Deborah number and weak fluctuations, changes 
in the polymer configuration during the sampling of any given fluctuation can be 
neglected. This is equivalent to simplifying the first factor of (6) in (59), and we 
therefore approximate d ,  (8) as 

. (60) 
(lcm-km) a2(8) 

i(o + ki) + Pe-' k'2 aa, aa, 
( k z - k ; ) ( G i ( k - k ) G , ( k - k ) ) .  

Note that if we were to retain the centre-of-mass diffusion created by the 
hydrodynamic fluctuations then in the denominator of the integrand in (60) we 
would include the non-local diffusion terms found in (53) and (54). These would 
create small corrections in the remaining development because the diffusivity is 
proportional to the small covariance tensor. Finally, for very large values of the 
PBclet number, Pe b 1, and in the long-time limit, where the polymer's centre-of- 
mass has spread over great distances relative to the correlation length of the 
fluctuations, we have 

Substituting this result back into (58) and inverting the transform, we find that 
the averaged equation defining ( G )  in the long-time limit is 
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where d:m = t[?$jm + rk 'n Bjkmnli (62b) 

( 6 W  
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De 
Bjkmn @ S d t 6 k  ( G j ( t ) $ m ( - t ) )  En. 

Equations (62b, c) serve as the definition of the full conformational diffusivity which 
includes conformational diffusion created by long-range hydrodynamic interactions 
in any dilute fixed bed. Clearly the form of the integral 

Jdt 6k ($j(C) $m( -t)) tn 

is crucial in determining any critical conditions which occur due to flow in the bed. 
With the aid of (46),  it is now possible to derive such conditions for a general 
covariance and, therefore, a general fixed bed structure. 

3.1. Critical conditions for general covariance 

Proceeding to derive these conditions, we note that (44) and (46) give the result 

where K ,  andK2 have been made dimensionless. If we substitute (63) into (62c),  then 
we obtain after some straightforward algebra 

De 
Bjkmn = -{83[(Skn- 4R2 & On) (q  um)l-84B,[SjkSmn+Sjn skm-3Sjm 8kn- 4 4 &mn 

- 0, 8jn- on 6km- om on 6jk+2q om 8kn +3& on Sj,]), (640,) 

where 83 = R ~ d 5 ~ ~ K 1 ~ 5 , 0 ~ + ~ ~ 2 ~ 5 , 0 ~ 1 ,  0 8 4  = 3 = d 5 P K 2 ( E , 0 )  0 ( 6 4 h  c) 

and = IA. Note that to within a multiplicative constant, Bjkmn is equal to Ajkmn 
defined in (10). In  addition, if we integrate (62a) over the spatial variable x and use 
the fact that Jdx (G) = (B), then we again arrive at (12a) except where dyk defined 
by (62b). It follows that there exists a critical value of De for a general covariance 
which is determined by the values of b3 and b4. To determine this condition we need 
only calculate the analogues of (15) and (16),  using the result (62b) for the 
conformational diffusivity. The results are 

d;" De -+P-  1 -7 (5p4 +p3)? = 0, 
dr  2R 

d z  - De 
d7+T:-1-- 2x2 (/33+/34)7 = 0, 
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where now s = 1 -(Dep4)/7t2. These are identical to (15) and (16) except where 
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We note, as an aside, that if one calculates the covariance in an isotropic bed of fibres 
and then calculates the values of /3, and p4, the equalities (67a) are identically 
satisfled. However, we omit the proof here. 

From (65) and (66), it follows that the critical condition for a general covariance 
is 

J o  

It is most important to note that Decrit only depends on K ,  and therefore only on the 
isotropic part of the covariance. The anisotropic part does not cause a critical stretch 
to occur. In addition, we note from (67b) that the isotropic part of the covariance, 
at least for isotropic fibre beds, is created entirely from the lack of fore-aft symmetry 
of the disturbance velocity fields in the bed. Thus, if p, were zero, then it follows that 
K ,  would also vanish. We shall further examine the inter-relationship of the isotropic 
part of the covariance and the fore-aft symmetry of the disturbance velocity in the 
next section where we discuss flow through dilute beds of spheres. 

Finally, the results of this section demonstrate the link between the large 
configuration change in fixed beds and that already reported by Jhon et al. (1987) 
and Lumley (1972) for turbulent flows. Namely, that in both instances it is the 
isotropic fluctuations which cause a critically large polymer configuration change. In 
the case of fixed beds, the long-range, disordered disturbance velocities create a 
velocity covariance with both anisotropic and isotropic parts. In turbulent flows, it 
is often assumed that the covariance is isotropic. In the case examined by Lumley 
(1972) and Jhon et al. (1987) the transition is time-dependent because they assume 
that there is no mean flow and thus the polymers sample the fluctuations in time 
rather than as they move through space. Nevertheless, although the means by which 
the polymer samples the fluctuations differ, the result is the same - the isotropic 
fluctuating field will create large conformation change at a certain value of the 
Deborah number. 

4. Polymer stretch in fixed beds of spheres: long-range interactions 
In this section, we briefly discuss the application of our theory to flow of polymers 

through dilute beds of spheres. We shall analyse the flow using the general scheme 
developed in the previous section. Alternatively, we could employ the results from 
Shaqfeh & Koch (1988a, b)  and develop a kinetic theory which accounts for 
polymer/sphere interactions just as we did for fibre beds in $2. These two methods 
are completely equivalent and yield identical results. 

For dilute beds of spheres, the dimensionless covariance of the equivalent Gaussian 
field is 

A = n ~ :  ~ R ( u ’ ) , ( ~ - R ( R ) ( u ’ ) , ( ~ ’ - R I R ) ,  (69) s 
where (u’),  is the conditionally averaged disturbance velocity (in the far field) for a 
sphere centred a t  R and A is made dimensionless with u2. We have assumed that the 
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spheres are randomly positioned in space and therefore that the probability density 
function for finding a sphere at R is n - the number density of spheres. Transforming 
(69) gives 

For dilute beds of spheres, it  is well known that far from the sphere the conditionally 
averaged velocity disturbance is (see Hinch 1977 ; Koch & Brady 1985) 

d^ = n ~ b n ~  S(k + k') (a'),(k) (a'),( - k ) .  (70) 

where k is the dimensionless wavenumber. Substituting this result into the definition 
of 2, we obtain 

where we have used the fact that for a dilute bed of spheres, a / ~ i  x (t$)i (Howells 
1974) and where a is the sphere radius. Comparing (72) to the general expression (46), 
we find 

K ,  = 0. 
92/2x#i 

K -  
- (k2+1)2' (73) 

Thus, there is no critical conformation change due to long-range hydrodynamic 
interactions in the dilute limit. Again, this is because the disturbance velocity is 
fore-aft symmetric about the mean flow, giving only the anisotropic term in the 
covariance (cf. (72)). The equations for the moments can be determined in this case 
by calculating p3 from (64b) 

Note that the integral in ( 6 4 b )  is actually conditionally convergent and therefore 
yields a logarithmically large contribution coming from wavenumbers large 
compared to l/a (interactions on lengths between a and I&). This has been discussed 
in detail in our previous publication concerning particle orientation in fixed beds (see 
Shaqfeh & Koch 1988~) .  

Substituting (74) along with p4 = 0 into (66a-c), we find 
- - - 
r2=+(l+2e-')+(D+~)(i-e-') ,  r$=++D(l-e-'), p2 = f ,  (75a-c) 

where 
D e b 3  32/2 1 D=-- - - 4; De In (/&/a). 
6n2 2 (754  

For all values of the Deborah number there is a finite steady-state solution given by 
- - - 
r 2 + D + l ;  ri-+++D; p 2 = + .  (76) 

We note that for these fluctuations, which are symmetric about the mean flow, 2 
does not change from its equilibrium value for all time. However, the stretch in the 
flow direction defined by 2 increases linearly with the Deborah number, resulting in 
a linear increase in 2. 

Thus, to obtain a 'critical stretch' for a polymer in flow through a dilute bed of 
spheres, one must break the symmetry of the disturbance velocity field created by 
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the spheres. A simple way of accomplishing this is to introduce a second sphere 
during the hydrodynamic interaction between a polymer and a given sphere. The 
presence of a second sphere (through its disturbance velocity) perturbs the direction 
of the force on a given sphere away from the mean flow direction. As we show below, 
these interactions then produce an isotropic component to the covariance and a 
critical condition. This demonstrates that the presence of multi-particle, long-range 
interactions sharply increases the probability of large polymer conformation change 
in these beds. 

To demonstrate this effect, we return to (69) for the dimensional covariance. We 
note that the first effect of two-sphere interactions is for a second sphere to induce 
a point force a t  the centre of the first sphere due to the disturbance flow of the second. 
Again the largest effect of these two-sphere interactions comes from the long-range 
effect (i.e. lengths of O ( K ~ ) )  where the spheres appear as point forces. Mathematically, 
using to denote the disturbance velocity created by a single sphere centred at the 
origin we have t i =  a(o’(k)+li(’)(k;r)+ ..., ( 7 7 4  

where the second term on the right-hand side of ( 7 7 a )  is the leading-order effect of 
the second sphere on the disturbance created by the first sphere (i.e. the first 
reflection interaction). In (77a ,  c )  is the inter article separation between the point 
forces. Note that ( 7 7 a )  is a power series in a/@ and that higher-order terms include 
multiple reflections plus multiparticle interactions. 

If we now use the result ( 7 7 a )  as the velocity fluctuation or disturbance created by 
a single sphere, then the covariance of the equivalent Gaussian field becomes 

P 

iij = ( 2 q 3  S(k + k’) n ~ i  + n2 K~ d66j1) djl) . (78)  [ I 1  
The first term on the right-hand side of (78)  corresponds to that already considered 
in (72) .  The second term provides a correction to the anisotropic part of the 
covariance as well as a new isotropic part. All corrections to the cyvariance created 
by the second term in (78)  are O($,) and are, therefore, a factor of @ smaller than the 
leading-order term in (72) .  This arises because of the weakness of the reflected 
velocities at distances of O ( K ~ ) .  Straightforward working yields the following result 
for the corrected covariance : 

+20(ka+ 27n95f 1)2 (S,,-L,L,)], (79)  

where we have not included the O($,) correction to the anisotropic part because it is 
of small consequence to the solution for the moments. On the other hand, the 
isotropic term now gives the correction to (73)  as 

K -  27x4, 
- 20(k2 + 1)2 
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Pore-size Deborah number 

FIGURE 8. The radius of gyration of a Hookean dumbbell for flow through a dilute, fixed bed of 
spheres 2)s. De. The calculations are shown both with (-) and without ( .  . . . * ) two-sphere 
hydrodynamic interactions included. The critical conditions which arise from the two-sphere 
interactions are shown at the bottom as solid triangles. 

and from (64c), p4 becomes 

Substituting (81) into (68), we find 

80 5.9259.. . 
274, In ( d / a )  % 4, In (l/&)' 

De,,,, = 

Thus, including two-sphere interactions creates a critical value of the Deborah 
number beyond which the finite size of the polymer molecule must limit the 
conformation change. The steady values of vs. De with and without two-sphere 
interactions are plotted in figure 8 for the linear dumbbell model. The qualitative 
difference between the behaviour of the dumbbell in the two different cases is clearly 
evident. Neglecting two-sphere interactions results in a monotone increase in with 
the Deborah number, but steady values are always obtainable and the rate of 
increase is modest with 7 % 8 at a value of De as large as 100. However, if we include 
two-sphere interactions then at  a finite (but fairly large) value of the Deborah 
number, the radius of gyration approaches infinity and there are no steady solutions 
beyond that point. Although this critical value is large for these dilute calculations 
it decreases sharply with increasing volume fraction. Indeed, in practice, one expects 
that for large volume fractions other higher-order multiparticle interactions (e.g. 
three-sphere interactions) will increase the isotropic part of the covariance and 
thereby decrease the critical Deborah number even further. Finally, we note that the 
results are affected by two-sphere interactions well before the critical condition, 
resulting in a significant increase in the radius of gyration over that created by the 
flow past single spheres. 
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FIGURE 9. Pictorial representation of polymer flow past different fixed bed particles: (a) flow 

past a single sphere, ( b )  flow past a two-sphere pair, (c) flow past B fixed fibre. 

In figure 9, we demonstrate pictorially the physical difference between the 
interaction of a polymer (dumbbell) and a single sphere versus an interaction with a 
two-sphere pair. If a dumbbell flows at a large distance past a single sphere and the 
restoring force is weak relative to the local shear force, it will deform such that the 
net change in the bead positions is a small displacement in the flow direction only. 
This is a consequence of the symmetry of the flow about the plane perpendicular to 
the mean velocity. The displacement simply results from the longer transit time of 
a bead which begins closer to the stationary sphere. However, if a dumbbell interacts 
under the same conditions with a two-sphere pair then, in general, it  will suffer a 
displacement both in the directions perpendicular and parallel to the mean flow. In 
this case, the second sphere perturbs the symmetry of the disturbance flow created 
by the single sphere. If the relaxation time of the dumbbell is long enough such that 
it will not return to equilibrium before a subsequent particle interaction, then any 
residual displacement perpendicular to the mean flow will increase the displacement 
occurring in these later interactions. This follows since the difference in the transit 
times of the two beads increases as their relative displacement perpendicular to the 
mean flow increases. Thus, large polymer conformation change is greatly enhanced 
by any displacements perpendicular to the mean flow, but these can only occur in beds 
where the disturbance flows created by the bed particles are not fore-aft symmetric 
about the mean velocity. Of course, all these comments apply equally well to our 
results for fibre beds in $ 2 .  In that case, the velocity field created in flow past a single 
bed particle is not (in general) symmetric about the mean flow. Thus, two-particle 
interactions are not necessary for the calculation of a critical condition. 

Although one must include multiparticle interactions to create a ‘critical stretch’ 
via the long-range interactions in some fixed beds, there is yet another mechanism 
where large conformation changes can occur through hydrodynamic interactions 
between a single bed particle and a polymer. As has been shown by Chilcott & 
Rallison (1988) and more recently by Harlen et al. (1990) and Harlen (1990), polymer 
molecules may undergo very large conformation changes in close interactions when 
they flow near the rear stagnation points of the fixed particles. Close interaction 
effects will be considered in the next section. 
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5. Close interactions 
In the preceding sections we have examined the effects of long-range interactions 

on the conformation of a polymer flowing through a fixed bed. The point- or line- 
force approximation adopted for the velocity disturbance caused by the fixed bed 
particles is valid for interactions in which the minimum separation of the polymer 
from the fixed bed particles is O ( K ~ ) .  These long-range interactions are much more 
frequent than interactions in which a polymer comes within an O(a)  distance of a 
fixed bed particle. The justification for the neglect of such close interactions in the 
present analysis is analogous to that given in our previous study of particle 
orientation in a fixed bed (Shaqfeh & Koch 1988a, b) ,  provided that the change in the 
polymer’s end-to-end distance during an interaction is of the same order as its 
original end-to-end distance. 

However, polymers that pass very close to the rear stagnation point of a fixed 
particle may become fully extended even if they are in the equilibrium state before 
the interaction (see Chilcott & Rallison 1988; Harlen 1990; Harlen et al. 1990). This 
type of interaction requires special attention. If a polymer with an initial end-to-end 
distance r’ = 11’1 passes close to a rear stagnation point of a fibre aligned perpendicular 
to the flow, then its final end-to-end distance r = 111 can be estimated by a scaling 
argument similar to that used by Harlen (1990) and Harlen et al. (1990). If we 
approximate the flow in the region behind the fibre as a planar extension with a 
maximum extension rate E ,  the position X ( t )  of the polymer’s centre-of-mass along 
the direction perpendicular to both the mean flow and the fibre’s orientation is 
X = X’e-Bt, where X’ is the initial position. The polymer’s end-to-end vector will 
move toward the mean flow direction (i.e. the axis of principle extension) and, if the 
Deborah number is sufficiently large such that the polymer relaxation can be 
neglected, then its length r is given by r = r’eEt. Using these relationships, the 
constraint that r cannot exceed its maximum extension r,, and taking the initial 
position to be X’ = a, we obtain 

r = r’(a/X) for X > a(r’/r,), ( 8 3 4  

r = r, for X < u(r’/r,). (83b)  

The region of fully stretched polymer, X + u ( ~ ’ / r , )  is referred to as a birefringent 
strand by Harlen et al. (1990). 

If we consider a fixed bed initially filled with polymers in their equilibrium coiled 
configuration (r’ = Rg)  and start flow through the bed a t  a very large value of the 
Deborah number, then the initial growth rate of the mean-squared stretch due to 
close interactions will be 

The rate of growtb of the mean-squared stretch due to long-range interactions, from 
(8 )  and (13 ) ,  is O(# URi/(a In:( l/q$))). These estimates indicate that close interactions 
will be important at  least in the initial stages of polymer stretch, if the dimensionless 
maximum extensibility R, = ro/Rg is sufficiently large, i.e. 

R, > $3 lnS(l/q5*). 

For reasonable estimates of R,, this inequality is satisfied except for very small 
values of the volume fraction. 
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While close interactions may be effective in causing an initial growth of the second 
moment of the polymer conformation distribution, they become less important as 
polymer stretching progresses. The diffusivity that describes the effects of long-range 
interactions on the polymer conformation grows quadratically with increasing end- 
to-end distance, leading to an exponential growth of the second moment in time. 
However once a polymer is fully stretched by a close interaction, i t  cannot be 
stretched any further and so there is no subsequent enhancement of the growth rate. 

This suggests a second way of assessing the relative importance of long-range and 
close interactions, which is to estimate the length of a fixed bed (in the limit of high 
Deborah number) that would be required to stretch all of the polymers close to their 
maximum extension if each mechanism were considered to act in isolation from the 
other. For long-range interactions, we can estimate this bed length from (16a) to be 
O(a$;i ln:(l/$f) In R,). For close interactions, if we assume that the effect occurs 
primarily due to full stretching of an initially relaxed polymer by a single fibre, we 
require a bed that is sufficiently long so that each polymer will pass through a strand 
behind at  least one fibre as it passes through the bed. This corresponds to an 
O(a$;lR,) bed length, which is much longer than that required for full stretch due 
to long-range interactions. If we allow for the possibility that a polymer may be 
extended successively by the extensional flow behind a number of different fibres 
(such as witnessed in periodic beds by Chmielewski et al. 1990), we are led to the 
conclusion that an O(1) relative stretch r/r’ due to many O(lnR,) fibres is the 
dominant mechanism for producing fully stretched polymers by close interactions. 
However, this mechanism still requires an O(a&l lnR,) bed length that is again 
larger than that required by long-range interactions alone. However, neither of these 
arguments describe the effect of both long and close interactions acting together, 
which might be significantly different than their effect separately. 

A more detailed assessment of the effects of close interactions would require a 
solution of the coupled problem in which polymers are stretched by both types of 
interactions. The long-range hydrodynamic interactions have been described in 
terms of a conformational (or pair) diffusivity for the two beads in a dumbbell. In 
contrast, close interactions would not contribute diffusive terms to the evolution 
equation, because the relative change in the end-to-end distance (r’ - r ) / r ’  during 
each interaction is not small. Instead the close interactions will contribute a non- 
local term to the evolution equation (8) of the form 

In the above, w(r,  r’) is the rate a t  which polymers originally within a differential 
volume dr‘ of r’ are stretched to an end-to-end distance r. This rate is proportional 
to U$,/a and is a strong function of r and r’ as noted above. 

Finally, we note that all scaling arguments made above are based on our results 
for long-range interactions in isotropic beds of fibres. Similar scaling arguments could 
easily be made for beds of spheres but we do not consider these here. In  addition, 
from $2, we know that both the isotropic and the anisotropic parts of the covariance 
are of the same order in volume fraction for $f < 1 in isotropic beds of fibres. This is 
not the case in beds of spheres or beds of fibres which are aligned in directions 
perpendicular to the mean flow. In these latter instances, the stretch induced by the 
long-range interactions is slightly weaker because the isotropic part of the covariance 
depends on multiparticle reflections as discussed in $4. The stretching due to close 
interactions is of similar magnitude for these beds and thus the relative importance 
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of close interactions may be greater. No stronger conclusions can be achieved without 
a detailed examination of the non-local equations. 

6. Conclusion and summary 
To conclude and summarize, $92-5 represent a beginning to the theoretical 

description of how particle interactions affect polymer conformation in flow through 
fixed beds. We have shown in $ 9 2 4  that long-range particle interactions in dilute 
beds can have surprising consequences for the conformation of simple dumbbells 
during flow. Even though the mean flow is constant in these beds, the manner in 
which the dumbbells sample the velocity gradient fluctuations in the bed is such that 
a significant fraction of the distribution can undergo a large conformation change. 
This occurs under conditions in which the relaxation time of the dumbbell is 
sufficiently long such that any displacement of the beads during an interaction has 
not completely relaxed before another interaction has occurred. In  addition, this 
conformation change can be largest when the velocity fluctuations or disturbances 
are such that the beads can be displaced in directions both perpendicular and parallel 
to the mean flow. If this is the case, then (beyond a certain critical Deborah number) 
a Hookean dumbbell will not achieve a steady conformation in the bed. Moreover, 
a Warner dumbbell will stretch to a large fraction of its maximum extensibility. We 
have theoretically described all these phenomena for dilute beds of both spheres and 
fibres throughout the present discourse. 

Although long-range interactions are very important in dilute fixed beds, close or 
short-range interactions can also be important under some circumstances. Scaling 
arguments are developed in $5 to estimate the effect that these close interactions 
might have on polymer stretch in disordered fixed beds. 

Finally, we note that most of the theory developed herein has application beyond 
the analysis of polymer conformation in fixed beds. To our knowledge, 93 contains 
new results for polymer conformation in general stochastic fields including the direct 
interaction approximation for the conformational distribution function (52). These 
results have direct application to pair diffusion in stochastic fields, because our model 
of a polymer molecule consists of independent beads connected by a spring. Finally, 
though perhaps clear intuitively, we have rigorously demonstrated the connection 
between the long-range hydrodynamic interactions in a dilute fixed bed and 
equivalent Gaussian velocity fields, specifically indicating the means of calculating 
the covariance of the equivalent field from the known form for the disturbance 
velocities created by the bed particles. Such a connection can now be used to link 
well-known results for dispersion in model fixed beds to other important results 
regarding dispersion in stochastic fields. In  fact, we have begun to make just such a 
connection in another publication (see Koch & Shaqfeh 1992). 

All of our results, while having very interesting theoretical consequences, must 
now be tested in the laboratory to determine whether they can describe at least the 
qualitative features of polymer conformation change in fixed beds. In this context, 
one should recall that there are a host of assumptions made as preliminaries to the 
theoretical development which, strictly speaking, are not true in most polymer flow 
systems of interest. However, these were important to make initial theoretical 
progress. Perhaps the most notable of these assumptions is that all velocity fields 
throughout our development could be calculated from the Stokes equations. Since we 
are more interested in large conformation change and stretch in polymer solutions, 
the resulting elastic stresses (which scale with the second moment of the distribution) 
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will be negligible in calculating any averaged flow fields only if the solutions are 
extremely dilute. Of course, the original work by James & McClaren (1975) involved 
measuring the change in particle drag as a function a flow rate and this was used as a 
means of inferring polymer conformation change. The drag force on a fixed bed 
particle would be nearly unchanged if the assumptions made in the present 
manuscript were strictly applied. Nevertheless, including the non-Newtonian nature 
of the flow fields self-consistently in any scheme to predict polymer conformation 
change in disordered beds is a very difficult task and one that should not be 
undertaken before the results presented in this manuscript are understood. We hope 
that our theory provides a ‘ qualitative guide ’ to the phenomena which occur under 
more general circumstances and we look forward to an experimental investigation of 
polymer conformation change in dilute, disordered fixed beds. 
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Appendix. Equivalent Gaussian fields in fixed-bed theory 
In this Appendix we demonstrate explicitly that the probability density functional 

(p.d.f.) describing the total velocity fluctuation created by the long-range 
hydrodynamic disturbances in a dilute fixed bed is of Gaussian form. This allows one 
to replace the explicit consideration of individual long-range hydrodynamic 
fluctuations with the equivalent stochastic field; a result we found to be particularly 
useful in our theoretical development in $3 and 4. To begin we define u‘ as the total 
velocity in the fixed bed of particles (spheres or fibres) minus the average velocity 
through the bed. Thus, it is the total velocity fluctuation. For dilute beds and 
including only the long-range hydrodynamic interactions (i.e. scaling all lengths on 
the screening length of the bed) we can approximate u’ as 

N 

u’ x X (u ’>~(xIR~) )  (A 1) 
1-1 

where (u‘)~ is the conditionally averaged velocity disturbance created by a bed 
particle (approximated as a point force for spheres and a line force for fibres) which 
includes the Brinkman screening created by the surrounding particles. In  (A 1)) R, 
is the position of the centre of the ith particle (a position along the centreline of the 
ith fibre) and we assume that there are N bed particles. Equation (A 1 )  follows since 
at large lengths the particles intervening between a point in the bed and any given 
particle can be approximated as an averaged medium and any multiple reflections 
between particles at  these distances create small corrections to the disturbance. We 
shall discuss these latter corrections at the end of this Appendix. We note, in this 
context, that (A 1) is part of an expansion which includes the additional effects of 
groups of 2, 3 and k particles, that has been discussed by Shaqfeh & Koch (1990). 
Finally, to completely specify the disturbance velocity created by a fibre in a fixed 
bed, one must also specify the orientation ei, which we will include in the following 
analysis whenever fibre beds are discussed. 
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Denoting u; = (u ' ) , (x)R, ) ,  we note that (u ' )  = 0 and therefore 

(u;)  = 0, 
where the average ( a )  is defined 

( a )  = I d R , P ( R , )  R,P(R,)  ... dR,P(R,) I /  
for beds of spheres with P(R,)  being the probability density of finding the ith point 
force at  position R,. The integrals are over the volume V of the system (assumed to 
be much larger than all microstructural dimensions) and for homogeneous random 
beds P(R,) = 1/V. For beds of fibres, the average is defined 

where the spatial integrals are over the plane perpendicular to the orientation vector 
e, of the ith line force and the orientational integrals are over the unit sphere. P(R,) 
is the probability density for the ith fibre to pass through the position R, and g(e,) 
is the probability density of orientation for the ith fibre. For homogeneous, random 
beds P(R,) = $f/(na2N), where is the bed volume fraction and a is the fibre radius. 

By definition of the probability density functional P(u;) we have, for fixed beds of 
spheres, (see Van Kampen 1981) 

For fibre beds, (A 5) would be of the same form but would include an average over 
g(ei), namely 

P(u;) = Jdede,)  JdR,P(R,) 604- (u?,(x I R, ; e,)). (A 6) 

Our purpose is to derive an expression for the probability density functional P(u') 
using the results (A 1), (A 5 ) ,  (A 6), and our knowledge of the characteristics of (u'),  
in fixed beds of spheres or fibres. 

We can formally write an expression for P(u') using a functional integral expression 
analogous to (A 6): 

where 

and where ID.; implies the functional integral over the velocity disturbance u;. The 
functional integral is defined in the usual manner (see Jensen 1981) and implies 
dividing x-space into a lattice and then integrating over the values of u; a t  each 
lattice point. Finally, we take the limit as the lattice spacing approaches zero. Note 
that the p.d.f. P(u') only has meaning through this kind of 'coarse graining' 
procedure and therefore it is not surprising that functional integrals naturally arise 
in the development. Combining (A 7)  and (A 5 )  we have 
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For beds of fibres, the average within the brackets would include an orientational 
average exactly as included in (A 6). 

To continue, we introduce the functional Fourier transform, which we will indicate 
by (just as we have indicated the usual Fourier transform in the text). So we define 
p(q) via the equation 

p(q )  = Du’ exp -i dxq(x).u’(x) P(u’) (A 10) J [ S  1 
and the inverse formula becomes 

P(u’) = c Dqexp i dxq(x).u’(x) &), s [I 1 
where c is a constant defined c = n l / ( 2 7 ~ ) ~  and the product is over all lattice points 

which comprise the discretized space. It follows that 
3 

6 u’-zuU; = c  Dqexp i dxq(x)- u ’ - x u ;  . ( i:l) s [s ( i l l  
Substituting this result into (A 9) gives 

and the corresponding expression for fibre beds is 

P(u’) = c Dqexp i dxq-u’ s [I 1 
dR,P(R,)6(u;-(u’),(x1Ri;e,)) exp dxq(x)- x u ;  . 

i I11 
(A 13b) 

Assuming that all of the fixed bed particles are identical and that their centre-of- 
mass and orientational statistics are described by the same density functions, we can 
write 

We can complete the functional integral in (A 14) over ui analytically and obtain 
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Of course, (A 15) again holds strictly only for beds of spheres and the analogous 
expression for the right-hand side of (A 15) in the case of fibre beds is 

To continue, we formally expand the exponential within the brackets on the right- 
hand side of (A 15), namely 

exp [ - iFxq(x)-(u’) , (x)  = l - i  dxq(x).(u’),(x) 1 1. 
-1 2 Sdx~dx ’ [q (x ) . (u ’ ) , (x ) ] [q (x ’ )+ (u ’ ) , (x ’ ) ]  ... . (A 16) 

We can now perform the average in (A 15) (i.e. the integral over R,)  by integrating 
this series term by term. Noting that 

kl P(R,) (u’),(x 14) = 0 

then the right-hand side of (A 15) becomes 

x [ l - ~ ~ d r ~ d x ’ q ( x ) q ( x ~ ~ : ( ~ ~ l ~ ( ~ ~ ) ( u ’ ) l ( x ~ R l ) ( u ’ ) l ( x ’ ~ ~ l ) ) + . . . ~ .  (A 17) 

For beds of fibres, a similar truncation yields the result 

The key step in the derivation is to realize that the truncated expansions shown in 
(A 17) and (A 18) give the exact asymptotic results in the limit as N+m. This can 
be demonstrated through simple order-of-magnitude estimates. Considering first 
(A 17),  we note that the long-range velocity disturbances (u’), in beds of spheres 
extend over a volume d and are of magnitude U a / ~ i  in that volume. Thus, 

( J d R 1 W  ~ u ’ ~ l ~ ~ / ~ l ~ ~ u ’ ~ l ~ x ’  IRA) 0 ( V “ $ h .  (A 19) 

Highef-order terms in the expansion (A 16) are of smaller order both in powers of 1/N 
and 9: for N+m and 4 1. For homogeneous beds of fibres, a similar scaling 
argument gives 

- O{V“/(Nln (1/$*)1 (A 20) 

and again higher-order terms which represent higher-order velocity correlation 
functions are of smaller order in both 1/N and l/ln (l/$f). 
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Thus, we have that, in the dual limit N+m and df 4 1 (with the limits taken in 
that order), 

N 

where 

+exp [ -f Idxldx’~(X).A(x,x’).q(x’) 1 , (A 21) 

= 12 JdR, (u/>,(x I R,) (u%(x/ 14). 

Taking a similar limit for flow in fibre beds gives the result 

+ exp [ -f j d x S d x ’ q ( x ) . A ( x , x ’ ) . q ( X ’ )  , (A 23) 1 

= &[Jde,g(e,) Ka2 dR, (u’),(x I R,  ;el)  (u’),(x’ I R,;  el). 

Finally, substituting the results (A 21) or (A 23) back into (A 13) gives 

where A is given by either (A 22) or (A 24) for beds of spheres or fibres respectively. 
Equation (A 25) is our final result, which states that the functional Fourier transform 
of the probability density functional is Gaussian, namely (cf. (A 11)) 

P(q) = exp [ -~Jdx(dx’q(x).d(x,x’).~(x’) I , (A 26) 

and therefore that the p.d.f. itself is Gaussian (Van Kampen 1981). In  addition, 
(A 26) is particularly convenient since, in this form, it is clear that the covariance of 
the Gaussian p.d.f. is A (see Van Kampen 1981). Note that the values of A given by 
(A 22) and (A 24) for beds of spheres and fibres respectively are identically those 
given by (69) and (42b) in the text. 

Finally, we discuss how corrections to the disturbance velocities created by 
multiparticle interactions affect the previous development. In  $4 we used a corrected 
value of the covariance to describe the effect of two-sphere interactions on the 
configuration of a dumbbell in flow through a fixed bed. ‘Two sphere’ interactions 
in this context means those explicit hydrodynamic interactions beyond the average 
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screening in the bed. We can include these interactions by revising (A 1) to better 
approximate the velocity fluctuation in the bed. Thus, we write 

N N-1 N 

u' w C (u'>l(xI Ri) + Z Z (u">Z(x I Ri, Rj), (A 27) 
1-1 i=l 5 > i  

where (u">,(x I Ri, R,) is that part of the two-particle conditionally averaged velocity 
field which cannot be expressed as the sum of one-particle conditionally averaged 
fields, i.e. 

<u">z(xlR,,Rj) (u'>,(xI Rg,R5)-(u'>l(xlRi)-(u')l(xI Rj). (A 28) 
One can now redo our entire derivation (A 2)-(A 26) beginning with the result (A 27) 
and noting that the double summation is the sum over all two-particle pairs in the 
fixed bed. The final result is that the second term in (A 27) corrects the covariance 
(A 22) by a term which is O ( V  q5f) for beds of spheres. This result is found in (78) and 
(79) in the text. Note that for beds of fibres a similar correction for two-fibre 
interactions would contribute a term of O(V/(lnz(l/q5f)) to (A 24). 
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